Tractable Transmission Topology Control Pablo Ruiz, Justin Foster, Alex Rudkevich and Michael Caramanis Charles River Associates and Boston University FERC Conf. Increasing Market Efficiency through Improved Software Washington, DC, 29 June 2011 ## **Objectives** In this talk, we will discuss tractable control of the transmission network topology, to - Increase the value extracted from existing transmission capacity - Reduce the need for new transmission capacity - Lower generation costs - Increase system reliability - Provide additional controls to manage congestion (especially that caused by variable generation) ## **Optimal Power Flow (OPF)** - Objective: select the production level of each scheduled generator for the single interval of interest so as to minimize the total operation costs - Constraints - generation - transmission - Model formulated so that all variables are continuous #### **OPF: No Transmission Constraints** - The optimal OPF solution employs the economic merit order: fully dispatch units starting from most economic to least economic, until supply equals demand - There is a single unit not at a capacity limit (marginal unit), whose cost sets the system-wide marginal price #### **OPF: Transmission-Constrained** - The economic merit order dispatch is not feasible, - Some low-cost units have to decrease their production, while some high-cost units have to increase their generation - US production costs increase by several billion dollars annually due to congestion - Number of marginal units equals number of binding transmission constraints +1 - Marginal cost becomes dependent on location ### Midwest ISO Real-Time Prices (3:30) ### Midwest ISO Real-Time Prices (4:00) ### Midwest ISO Real-Time Prices (4:30) #### **AC Power Flows** - Power flows distribute over the transmission network according to Kirchoff's Laws: inversely proportional to path impedance - To control flows, one needs to - re-dispatch generation - control effective impedances - Few transmission branches have flow control devices - All branches have switches which can connect or disconnect the branch ## 7-bus Example: All Lines Closed # 7-bus Example: Line 3 – 4 Opened ## **Transmission Topology Control** - By switching transmission elements on or off, the network impedance can be discretely controlled so that the transfer capacity between low-cost resources and loads is maximized - The branch states can be added to the OPF as decision variables, converting the OPF into a MIP - Given the size of real systems and solution time requirements, MIP OPF formulations are computationally intractable ## **Topology/Dispatch Requirements** - OPF feasible: all demand is supplied and there are no overloads - Cost-reduction: transmission topology changes allow a lower out-of-merit cost dispatch - Reliability requirements: redundant connections (system can withstand outages) - Connectivity requirements: disconnecting transmission elements does not cause system separation (islanding) #### **Tractable Policies** - To significantly reduce the computational time while providing near-optimal savings, we employ sensitivitybased iterative heuristic policies for transmission topology control - These policies: - √ ensure feasibility - ✓ enforce security constraints - √ maintain system connectivity (no islanding) # **IEEE 118-bus Test System** ## 118-bus System Simulations - Topology represents a portion of the AEP system circa 1962 - 118 buses, 54 generators, 194 branches (all connected) - Monte-Carlo simulation, 100 samples of available wind power and fuel cost realizations - Congestion costs 9.49% of the production costs with initial topology # **Mean Congestion Cost** # 118-bus System Simulations | metric | initial | copper | optimal | policy 1 | policy 3 | policy 4 | |--|----------|------------|------------|-----------|------------|------------| | | topology | plate | | | | | | expected cost (k\$) | 129.7 | 117.4 | 120.5 | 126.9 | 121.2 | 120.6 | | expected savings (%) | n/a | 9.3 | 6.9 | 2.1 | 6.4 | 6.6 | | min / max savings (%) | n/a | 1.0 / 19.2 | 0.8 / 11.3 | 0.3 / 4.9 | 0.7 / 11.2 | 0.6 / 10.6 | | savings w/ 10% wind forecast error (%) | n/a | 9.3 | 6.5 | 2.1 | 6.2 | 6.4 | | lines disconnected (median) | n/a | n/a | 22 | 4 | 16 | 21 | | av. opened flow (%) | n/a | n/a | 28% | 58% | 28% | 26% | | open lines in optimal topology | n/a | n/a | 100% | 36% | 56% | 52% | | expected computation time (s) | 0.004 | 0.003 | 3 - 3600 | 0.55 | 0.33 | 0.42 | ## **Summary** - Transmission congestion increases production costs - Topology control can be effectively used to minimize these cost increments while maintaining reliability, but computational costs are high, due to integer variables - We developed tractable algorithms that use sensitivity information to select promising candidate lines for switching - The sensitivities employed indicate cost reductions while maintaining connectivity requirements - Preliminary simulation results are very promising ## **Concluding Remarks** - Potential benefits of transmission topology control are very large - Production cost savings - Reduce transmission investment costs - Add flexibility in operations - Increase the ability to incorporate variable resources (wind, solar) - Increase reliability #### **Questions?** Pablo A. Ruiz pruiz@crai.com **Charles River Associates** 200 Clarendon St Boston, MA 02116